

March 8, 2007

400 Seventh St., S.W. Washington, DC 20590

In Reply Refer To: HSSD/CC-97

Dr. Chuck A. Plaxico Battelle Memorial Institute 505 King Avenue Columbus, OH 43201-2693

Dear Dr. Plaxico:

Thank you for your mail correspondence of January 15, 2007, requesting the Federal Highway Administration (FHWA) acceptance of the CrashGard Sand Barrel system developed by Plastic Safety Systems, Inc. (PSSI) for use on the National Highway System (NHS) under the provisions of the National Cooperative Highway Research Program (NCHRP) Report 350 "Recommended Procedures for the Safety Performance Evaluation of Highway Features". Accompanying your letter was a report on analysis of PSSI's CrashGard Sand Barrel system using Finite Element Analysis conducted by your institute, full-scale crash test reports prepared by Transportation Research Center Inc., test videos and drawings.

Requirements

Crash cushions should meet the guidelines contained in the NCHRP Report 350, "Recommended Procedures for the Safety Performance Evaluation of Highway Features". The FHWA memorandum "<u>ACTION</u>: Identifying Acceptable Highway Safety Features" of July 25, 1997, provides further guidance on crash testing of crash cushions.

Product description

The CrashGard Sand Barrel system is a non-redirective, gating crash cushion which consists of twelve sand-filled UV-resistant polyethylene barrels installed in array as shown in Enclosure 1. It consists of three components:

- Barrels of 36" (914 mm) diameter and 48" (1219 mm) in height. Each barrel is manufactured from High Density Polyethylene (HDPE) plastic. Each barrel weighs approximately 39 lb (17.7 kg) empty and can be filled with up to 2100 lb (952.5 kg) of sand.
- Inserts, which allow for ballast of either 200, 400 or 700 lbs (91, 182 or 318 kg) of washed concrete sand. These inserts are designed to maintain the proper center of gravity of the sand and are not used in the barrels filled with 1400 or 2100 lb (635 or 953 kg) of sand.
- Lids

Drawings of the CrashGard Sand Barrel system are provided in Enclosure 1.

Analysis and Testing

The NCHRP Report 350 requires that in order for non-redirective, gating crash cushions to meet test level 3 criteria they must successfully pass tests 3-40, 3-41, 3-42, 3-43 and 3-44.

In December 2005 you successfully conducted test 3-42 with the 820C vehicle and test 3-43 with the 2000P vehicle. All occupant risk and vehicle trajectory criteria were met. However, maximum roll angle in the test with the 2000P vehicle was 45.6 degrees.

In spring 2006 you conducted test 3-41 with a 2000P vehicle impacting the device head on at 100 km/h. This test was not successful. The vehicle overrode the lead sand barrels which caused it to ramp up on the downstream barrels and vault the vehicle over the target which constituted failure of your sand barrel system to successfully and safely contain and stop the vehicle upon impact. PSSI had stated that a possible cause for this override behavior was that the original position of the lead barrels' center of gravity (c.g.) might be too low. Your evaluation of the CrashGard Sand Barrel system centered on performance of the system in terms of barrel c.g. height using Finite Element Analyses (FEA) confirmed that conclusion. You further showed that the redesign of the system with a 2 inch (51 mm) increase in the c.g. height of the sand in the lead barrels accomplished by a simple change to the barrel's "insert" could resolve the problem.

In the meeting of Battelle and PSSI personnel with my staff you agreed on the best and most practical strategy for further testing and analysis of the redesigned CrashGard Sand Barrel system required for its acceptance for use on the NHS under the provisions of the NCHRP Report 350. From the documentation provided to support your request for acceptance of the CrashGard Sand Barrel I see that you closely followed this strategy.

First of all, you demonstrated that the FEA based analysis tool replicates the test event 3-41 for the initial sand barrel system design and that the redesigned CrashGard Sand Barrel system would perform successfully in test 3-41. I agree that FEA captured major events and general behavior of the vehicle and the device as reported in the actual test.

You further conducted a successful repeat of the physical test 3-41 with the redesigned sand barrel system. The test met all the NCHRP Report 350 evaluation criteria. As opposed to the previously failed test, the impacting vehicle remained upright during and after the impact and came to rest 16 inch (0.4 m) to the left of the device.

Having results of both the FEA and physical test you were able to further validate the FEA model. I agree that the comparison of simulated and physical 3-41 tests indicates that the model adequately captures major events and general behavior of the vehicle and the device.

You then proceeded to conduct the remaining physical tests 3-40 and 3-44 with the redesigned CrashGard Sand Barrel system. Both tests met all the NCHRP Report 350 evaluation criteria.

Full-scale crash tests 3-42 and 3-43 conducted on the initial design of the CrashGard Sand Barrel system in December 2005 were successful. Therefore, as it was agreed with my staff, new physical tests on the redesigned system were not required. I agree that a 2 inch (51 mm) increase in the c.g. height of the sand in the lead barrels will not deteriorate the performance of the system in these tests and may improve it. To verify that, and also because the roll angle in test 3-43 with the 2000P vehicle was too high, it was decided that you use your FEA model to simulate this test on the redesigned system. The results of the simulated test 3-43 met all the NCHRP Report 350 evaluation criteria. The pickup truck model remained stable throughout the impact event and the computed occupant risk factors were within the limits specified by the NCHRP Report 350. The roll angle did not exceed 3.1 degrees during the time of the simulation. As it can be seen from the test videos, even though the roll angle might increase after the end of the simulation period, such increase will not be as significant, which eliminates concerns related to somewhat high roll angle recorded in physical test 3-43 conducted on the initial design of the CrashGard Sand Barrel system.

The summary results of crash tests of the redesigned system (#061111, test 3-41; #061120, test 3-40; #061025, test 3-44) and of the initial design (#051277, test 3-42; #051228, test 3-43) are provided in Enclosure 2 in the order matching the actual sequence of the above test events. Also, Enclosure 2 contains summary results of the FEA of test 3-43 conducted on the redesigned system.

In summary I agree that the CrashGard Sand Barrel system, as described above, meets the appropriate evaluation criteria for the NCHRP 350 test level 3 for non-redirective, gating crash cushions and may be used at all appropriate locations on the NHS when selected by the contracting authority, subject to the provisions of Title 23, Code of Federal Regulations, Section 635.411 as they pertain to proprietary products. This acceptance is based on the reported crash performance of the CrashGard Sand Barrel system and is not intended to address the long-term durability of the unit. Further, I am assuming that production models will be identical to the prototype test units.

Standard provisions

Please note the following standard provisions that apply to the FHWA letters of acceptance:

- Our acceptance is limited to the crashworthiness characteristics of the devices and does not cover their structural features, nor conformity with the MUTCD.
- Any changes that may adversely influence the crashworthiness of the device will require a new acceptance letter.
- Should the FHWA discover that the qualification testing was flawed, that in-service performance reveals unacceptable safety problems, or that the device being marketed is significantly different from the version that was crash tested, it reserves the right to modify or revoke its acceptance.
- You will be expected to supply potential users with sufficient information on design and installation requirements to ensure proper performance.

- You will be expected to certify to potential users that the hardware furnished has essentially the same chemistry, mechanical properties, and geometry as that submitted for acceptance, and that they will meet the crashworthiness requirements of the FHWA and the NCHRP Report 350.
- To prevent misunderstanding by others, this letter of acceptance, designated as number CC-97 shall not be reproduced except in full. As this letter and the documentation which support it become public information, it will be available for inspection at our office by interested parties.
- The CrashGard Sand Barrel system is a patent pending device and is considered "proprietary". The use of proprietary devices specified on Federal-aid projects, except exempt, non-NHS projects: (a) must be supplied through competitive bidding with equally suitable unpatented items; (b) the highway agency must certify that they are essential for synchronization with existing highway facilities or that no equally suitable alternative exists; or (c) they must be used for research or for a distinctive type of construction on relatively short sections of road for experimental purposes. Our regulations concerning proprietary products are contained in Title 23, Code of Federal Regulations, Section 635.411, a copy of which is enclosed.
- This acceptance letter shall not be construed as authorization or consent by the FHWA to use, manufacture, or sell any patented device for which the applicant is not the patent holder. Patent issues, if any, are to be resolved by the applicant.

Sincerely yours,

Jerbab

John R. Baxter, P.E. Director, Office of Safety Design Office of Safety

Enclosures

Intended Use

The Plastic Safety Systems, Inc. (PSS) CrashGardTM Sand Barrel System is a non-redirective, gating sand barrel, or crash cushion. Sand barrels are designed to protect fixed objects, whether permanent or temporary. Sand barrels are designed to reduce the likelihood of a vehicle impacting the object.

The CrashGard Sand Barrel System meets NCHRP-350, Test Level 3 requirements.

Properly designed arrays will decelerate the vehicle within the parameters described in NCHRP-350.

CrashGard Sand Barrels shall be filled with Washed Concrete Sand, ASTM C-33 or equivalent.

System Design and Configuration

The CrashGard Sand Barrel System consists of three (3) components:

- Barrel, P/N CC-48:
 - o Overall dimensions: 36" [914mm] diameter, 48" [1219mm] height.
 - Features:
 - Designed so that one barrel satisfies all weight requirements: 200, 400, 700, 1,400 and 2,100 lbs.
 - Barrels nest easily when empty.
 - Easily transported by forklift or with CrashGard Hoist Lift Ring.
 - Accommodates reflective sheeting.
- Insert, P/N CC-I27:
 - Overall dimensions: 27" [686mm] square, 10.4" [264mm] height.
 - Features:
 - The insert, when installed, allows for ballast of either 200, 400, or 700 lbs. of sand.
 - The insert is not required to fill barrels to 1,400 or 2,100 lb. levels.
 - Inserts will nest.
- Lid, P/N CC-L36:
 - Overall dimensions: 36.5" [927mm] diameter, 6.6" [168mm] height.
 - Features:
 - The lip of the lid snaps into a groove in the top of the barrel and provides a tamper-proof fit.
 - May prevent water infiltration and vandalism.
 - Lids will nest.

Contact Information:

Plastic Safety Systems, Inc. 2444 Baldwin Rd. Cleveland, OH 44104 800-662-6338 / <u>www.plasticsafety.com</u>

CrashGard Sand Barrel

Plastic Safety Systems, Inc.

Designator to be assigned

SHEET NO.	DATE:
2 of 6	1/19/07

3-40

Dummy(s) Gross Static Test Inertial

y-direction z-direction

General Information		Impact Conditions		Test Article Deflections (m)		Vehicle Trajectory Post Test	The impacting
Test Agency	Transportation Research	Speed (km/h)	101.9	Dynamic	58.5		vehicle's final
	Center Inc. (TRC Inc.)	Angle (deg)	15	Permanent	58.5		most outer left
Test No.	051228	Exit Conditions					trajectory did not
Date	December 28, 2005	Speed (km/h)	N/A	Vehicle Damage			stay within twelve
Test Article		Angle (deg)	N/A	Exterior			feet of the barrier.
Type	Sand barrel array	Occupant Risk Values		VDS	N/A		Assuming that the
Manufacturer	Plastic Safety Systems, Inc.	Impact Velocity (m/s)		CDC	12FZEW2		barrier was at the
Size and/or dimension	12 individual portable sand filled	x-direction	8.0	Interior			edge of the lane,
and material of key	barrels, each being 122 cm high	y-direction	0.9	OCDI	FS000000		the vehicle would
elements	with a 91 cm diameter	THIV (optional)	N/A	Maximum Exterior			not have stayed
Soil Type and Condition	N/A	Ridedown Acceleration (g's)		Vehicle Crush (mm)	201		within a 12-foot
Test Vehicle		x-direction	3.6	Max. Occ. Compart.			lane width.
Type	Production Model	y-direction	2.2	Deformation (mm)	7		
Designation	2000P	PHD (optional)	N/A				
Model	2000 Chevrolet Silverado	ASI (optional)	N/A	Post-Impact Vehicular Behavior			
Mass (kg)		Max. 0.050-s Average (g's)		Maximum Roll Angle (deg)	45.6		
Curb	2238.0	x-direction	N/A	Maximum Pitch Angle (deg)	7.6		
Test Inertial	2027.0	y-direction	N/A	Maximum Yaw Angle (deg)	12.2		
Dummy(s)	0.0	z-direction	N/A				
Gross Static	2027.0						

	e 000/0	N CI	Vehicle Trajectory Post Test The impacting	vehicle's final most outer left	trajectory stayed	within twelve feet	of the tarmer. Assuming that the
S OCE:0	0.000		e Deflections (m)	ic 9.69 ent 9.69		age m	N/A
0.180 s	60010	l Impact Point	Test Articl	101.2 Dynami 0 Perman		N/A Vehicle D	N/A EXMENCE UDS VDS
0.060 s	e 2000's		Impact Conditions	Research Speed (km/h) C Inc.) Anele (dez)	Exit Conditions	006 Speed (km/h)	Angle (deg) Occupant Risk Val
s 000.0	e 000/0		General Information	Test Agency Transportation E Certer Inc. (TRG	Test No. 061111	Date November 11, 2	Test Article Send barrel array

General Information		Impact Conditions		Test Article Deflections (m)		Vehicle Trajectory Post Test	The impacting
Test Agency	Transportation Research	Speed (km/h)	101.2	Dynamic	9.69		vehicle's final
1	Center Inc. (TRC Inc.)	Angle (deg)	0	Per manent	69.6		most outer left
Test No.	061111	Exit Conditions					trajectory stayed
Date	November 11, 2006	Speed (km/h)	N/A	Vehicle Demage			within twelve feet
Test Article		Angle (deg)	N/A	Exterior			of the burrier.
Type	Send berrel array	Occupent Risk Values		VDS	N/A		Assuming that the
Manufacturer	Plastic Safety Systems, Inc.	Impact Velocity (m/s)		CDC	12FZEW2		berrier was at the
Size and/or dimension	12 individual portable sand filled	x-direction	8.9	Interior			edge of the lane,
and material of key	barrels, each being 122 cm high	y-direction	0.4	OCDI	LF000000		the vehicle would
e lem ents	with a 91 cm diameter	THIV (optional)	32.24 km/h	Maximum Exterior			have stayed within
Soil Type and Condition	N/A	Ridedown Acceleration (g's)		Vehicle Crush (mm)	167		a 12-foot lane
Test Vehicle		x-direction	11.46	Max. Occ. Compart.			width.
Type	Production Model	y-direction	1.6	Deformation (nun)	9		
Designation	2000P	PHD (optional)	11.54 g				
Model	2002 GMC Sierra 2500	ASI (optional)	0.68	Post-Impact Vehicular Behavior			
Mass(kg)		Max. 0.050 s Average (g's)		Maximum Roll Angle (deg)	-7.73		
Curb	2285.0	x-direction	L'L-	Maximum Pitch Angle (deg)	-6.04		
Test Inertial	2031.7	y-direction	6.0-	Maximum Yaw Angle (deg)	-9.79		
Dummy(s)	0.0	z-direction	-2.8				
Gross Static	2031.7						

2.000 s	o) (au	122 CM	cle Trajectory Post Test The impacting vehicle's final most outer right
I:200 s			Deflections (m) Vehi 17.25 Vehi at 17.25
0.600 s	ll Impact Point	¶5.0 m 17.25 m ⊂	Test Article 101.8 Dynamic 0 Permaner
0.300 s	Origins	5.01 9.3 m	Impact Conditions Research Speed (km/h) C Inc.) Angle (deg)
0.00 s			General Information Test Agency Center Inc. (TR

Tarsportation Research Speed (km/h) 101.8 Dynamic 17.25 Test No. 061120 Exit Conditions N/A Vince 17.25 Test No. 061120 Exit Conditions N/A Vehicle Damage 17.25 Test No. 061120 Exit Conditions N/A Vehicle Damage 17.25 Test Article Sand barrel array Norember 20, 2006 Speed (km/h) N/A Vehicle Damage 17.25 Type Sand barrel array Occupant Risk Values N/A Vince N/A Type Pasic Safety Systems. Inc. Impact Velocity (m/s) 9.6 Interior 127EW2 Size and/or dimension 12 individual portable sand filled y-direction 0.7 0 CDI R8000000 Size and/or dimension N/A Exterior N/A Exterior 127EW2 Size and/or dimension Diarividual portable sand filled y-direction 0.7 0 CDI R8000000 Sil Type and material of key barrels. each being 122 cm high y-direction 0.7 0	Deneral Information		Impact Conditions		Test Article Deflections (m)		Vehicle Trajectory Post Test	The impacting
Test No.Center Inc. (TRC Inc.)Angle (deg)0Permanent17.25Test No.061120Exit ConditionsN/AVehicle Damage17.25DateNovember 20, 2006Speed (km)N/AVehicle Damage17.25TypeTypeSand barrel arrayN/AVehicle DamageN/ATypeBand or dimension12 individual portables sund filedN/AVehicle DamageN/ASize and/or dimensionDateN/AExteriorN/AVehicle DamageSize and/or dimensionDateN/ACOCC12 FZEW2D/AManufacturerDate/stateN/AVehicle DamageN/ASize and/or dimensionDate/state0.7OCDIRS000000and material of keywith a 91 cm diameterTHIV (optional)0.7OCDIRS000000Sil Type and ConditionN/AMaximum Exterior-1N/AN/AReledown Acceleration (g's)S. Max. Occ. Compart1N/AObsignationProduction ModelY-direction2.1Deformation (mn)40Designation2.1Deformation (mn)0.70.79Post-Impact Vehicular BehaviorMass (kg)845.5XMaximum Roll Angle (deg)-31.633.9Mass (heice91.876.0Post-Impact Vehicular Behavior-1Deformation2.7Maximum Roll Angle (deg)-33.9-33.9Mass (heice90.6Post-Impact Vehicular Behavior-1-1D	Fest Agency	Transportation Research	Speed (km/h)	101.8	Dynamic	17.25		vehicle's final
Test No.061120Exit ConditionsDateNovember 20, 2006Speed (turn)N/ADateNovember 20, 2006Speed (turn)N/AExst ArticleSand barrel arrayN/AExteriorTypeSand barrel arrayOccupant Risk ValuesV/AManufacturerPlastic Safety Systems, Inc.Impact Velocity (m/s)N/AManufacturerPlastic Safety Systems, Inc.Impact Velocity (m/s)N/ANamufacturerPlastic Safety Systems, Inc.Impact Velocity (m/s)N/ASize and or dimension12 individual portable sand filledx-direction9.6InteriorSoil Type and ConditionN/AAOCDC12FZEW2Soil Type and ConditionN/AStafettion0.7OCDCSoil Type and ConditionN/AAATypeProduction Modely-direction2.1DeformationTypeProduction Modely-direction2.1Deformation (mm)40Designation2000 Chevolet Metro LSiMax. 0050 -s Average (g's)8.7Maximum Roll Angle (deg)31.6Mass (kg)845.5X-direction2.7Maximum Roll Angle (deg)23.9Mass (kg)76.02.72.7Maximum Yaw Angle (deg)23.9Dummy(s)76.02.72.7Maximum Yaw Angle (deg)23.9Mass (kg)2.7Maximum Yaw Angle (deg)23.923.9Mass (kg)2.792.7Maximum Yaw Angle (deg)23.9Ma		Center Inc. (TRC Inc.)	Angle (deg)	0	Permanent	17.25		most outer right
Date November 20, 2006 Speed (km/h) N/A Vehicle Damage Test Artricle Type Angle (deg) N/A Viscon VDS N/A Type Sand barrel array Occupant Risk Values N/A Exterior VDS N/A Manufacturer Plastic Safety Systems, Inc. Impact Velocity (m/s) 9.6 Interior 12:FZEW2 Size and/or dimension 12 individual portable sand filled x-direction 0.7 0.0D1 RS000000 and material of key barrels, each being 122 cm high y-direction 0.7 0.0D1 RS000000 Soill Type and Condition N/A X-direction 0.7 0.0D1 RS000000 Tsy Vehicle Production Model y-direction 0.7 0.0D1 RS000000 Type Production Model y-direction 0.5 Max. Occ. Compart. -1 Type Production Model PHD (optional) 0.5 Max. Occ. Compart. 40 Mass (k) S45 Max. Occ. Compart. 0.65 Max. Occ. Compart. <td>Test No.</td> <td>061120</td> <td>Exit Conditions</td> <td></td> <td></td> <td></td> <td></td> <td>trajectory did not</td>	Test No.	061120	Exit Conditions					trajectory did not
Test ArticleAngle (deg)N/AExteriorTypeSand barrel arrayCocupant Risk ValuesN/AExteriorManufacturerPlastic Safety Systems, Inc.Impact Velocity (m/s)0.0VDSN/ASize and/or dimension12 individual portable sand filledx-direction9.6Interior12FZEW2Size and/or dimensionbarrels each being 12 cm highy-direction9.6Interior12FZEW2Soil Type and ConditionN/AMaximum Exterior1.70.001RS000000Bernentswith a 91 cm diameterRidedown Acceleration (g's)3.4.79 kmhMaximum ExteriorTest VehicleProduction Modely-direction0.70.011RS000000DesignationN/Aweinerion0.70.001RS000000Mass (kg)2000 Chevrolet Metro LSiASI (optional)9.5Max. Occ. Compart.Mass (kg)45.5Mass. Occ. Compart.40Mass (kg)45.5Max. 0.050 -s Average (g's)3.7Maximum Roll Angle (deg)Mass (kg)76.02.1Deformation (mm)40Curb845.5x-direction0.79Post-Impact Vehicular BehaviorMass (kg)76.02.7Maximum Yaw Angle (deg)23.9Mass (kg)76.02.7Maximum Yaw Angle (deg)23.9Curb2.7Maximum Yaw Angle (deg)23.923.9Moss Static91.87.62.7Maximum Yaw Angle (deg)23.9	Date	November 20, 2006	Speed (km/h)	N/A	Vehicle Damage			stay within twelve
TypeSand barrel arrayOccupant Risk ValuesVDSN/AManufacturerPlastic Safety Systems, Inc.Impact Velocity (m/s)CDCI2FZEW2Size and/or dimension12 individual portable sand filledx-direction9.6InteriorI2FZEW2Soil Type and ConditionN/A0.70.0CLRS000000Soil Type and ConditionN/AArinetial of KeyNaminum Exterior1.1Soil Type and ConditionN/AArinetial of KeyNaminum Exterior1.1Test Vehicle7.00.710.0CLRS000000TypeProduction Modely-direction0.70.0CL1.1TypeProduction Model2.1Deformation (mm)40Designation2000 Chevrolet Metro LSiASI (optional)0.550.55Max.Occ. Compart.Mass (kg)845.5X-direction2.1Deformation (mm)40Mass (kg)845.5X-direction0.75Maximum Roll Angle (deg)31.6Mass (kg)76.002.7Maximum Roll Angle (deg)31.6Curb845.5X-direction2.7Maximum Roll Angle (deg)32.9Dummy(s)76.002.7Maximum Yaw Angle (deg)22.82Dummy(s)7.602.7Maximum Yaw Angle (deg)22.82Curb Static91.891.87.7Maximum Yaw Angle (deg)22.82	Test Article		Angle (deg)	N/A	Exterior			feet of the barrier.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Type	Sand barrel array	Occupant Risk Values		NDS	N/A		Assuming that the
Size and/or dimension12 individual portable sand filledx-direction9.6Interiorand material of keybarrels, each being 122 cm highy-direction0.70.710.701RS000000elementswith a 91 cm diameterTHY (optional)34.79 kmhMaximum Exterior8.000000Soil Type and ConditionN/ARidedown Acceleration (g*s)9.5Max. Occ. Ompart1Test VehicleProduction Modely-direction2.1Deformation (mm)40DesignationPassenger carPHD (optional)9.55 gPost-Impact Vehicular BehaviorModel2000 Chevrolet Metro LSiASI (optional)9.55 gPost-Impact Vehicular BehaviorMass (kg)845.5x-direction2.1Deformation (mm)40Mass (kg)76.076.07.7Maximum Roll Angle (deg)-3.1.6Dummy(s)76.02.31Maximum Nitch Angle (deg)-2.3.9Dummy(s)76.02.401.5Maximum Yaw Angle (deg)2.2.2.2Dummy(s)76.02.77Maximum Yaw Angle (deg)2.2.2.2	Manufacturer	Plastic Safety Systems, Inc.	Impact Velocity (m/s)		CDC	12FZEW2		barrier was at the
and material of key barrels, each being 122 cm high y-direction 0.7 0 CDI RS000000 elements with a 91 cm diameter THIV (optional) 34.79 km/h Maximum Exterior Soil Type and Condition N/A Ridedown Acceleration (g's) Y chicle Crush (mm) ¹ Y chicle Y chicle Crush (mm) ¹ Y chicle Y chicle Crush (mm) ¹ Y chicle Y chicl	Size and/or dimension	12 individual portable sand filled	x-direction	9.6	Interior			right edge of the
elements with a 91 cm diameter THIV (optional) 34.79 km/h Maximum Exterior Soil Type and Condition N/A Ridedown Acceleration (g's) Vehicle Crush (mm) 1 Test Vehicle Production Model y-direction 9.5 Max. Occ. Compart. Type Production Model y-direction 2.1 Deformation (mm) 40 Designation Passenger car PHD (optional) 9.55 Max. Occ. Compart. 0 Model 2000 Chevrolet Metro LSi ASI (optional) 9.65 Post-Impact Vehicular Behavior Mass (kg) 845.5 x-direction 8.7 Maximum Roll Angle (deg) -31.6 Curb 845.5 x-direction 2.7 Maximum Yaw Angle (deg) -23.9 Dummy(s) 7.0 2.7 Maximum Yaw Angle (deg) -23.9 Curb 2.7 Maximum Yaw Angle (deg) -23.9	and material of key	barrels, each being 122 cm high	y-direction	0.7	OCDI	RS000000		lane, the vehicle
Soil Type and Condition N/A Ridedown Acceleration (g's) Vehicle Crush (mm) -1 Test Vehicle x-direction 9.5 Max. Occ. Compart. Type Production Model y-direction 2.1 Deformation (mm) 40 Type Production Model y-direction 2.1 Deformation (mm) 40 Designation 2000 Chevrolet Metro LSi ASI (optional) 0.79 Post-Impact Vehicular Behavior Mass (kg) 845.5 x-direction 0.79 Post-Impact Vehicular Behavior Mass (kg) 845.5 x-direction 3.7 Maximum Roll Angle (deg) 31.6 Dummy(s) 760 z-direction 2.7 Maximum Yaw Angle (deg) -23.9 Dummy(s) 70 z-direction 2.7 Maximum Yaw Angle (deg) -23.9	elements	with a 91 cm diameter	THIV (optional)	34.79 km/h	Maximum Exterior			would not have
Test Vehiclex-direction9.5Max. Occ. Compart.TypeProduction Modely-direction2.1Deformation (mm)40DesignationPassenger carPHD (optional)9.65 gPost-Impact Vehicular BehaviorModel2000 Chevrolet Metro LSiASI (optional)0.79Post-Impact Vehicular BehaviorMass (kg)845.5x-direction8.7Maximum Roll Angle (deg)-31.6Dummy(s)76.0z-direction1.5Maximum Yaw Angle (deg)-228.2Dummy(sic919.82.72.72.72.28.2	Soil Type and Condition	N/A	Ridedown Acceleration (g's)		Vehicle Crush (mm)	-1		stayed within a 12-
TypeProduction Modely-direction2.1Deformation (mm)40DesignationPassenger carPHD (optional)9.65 g9.65 gPost-Impact Vehicular BehaviorModel2000 Chevrolet Metro LSiASI (optional)0.79Post-Impact Vehicular Behavior40Mass (kg)845.5x-direction8.7Maximum Roll Angle (deg)-31.6Curb843.8y-direction1.5Maximum Pitch Angle (deg)-23.9Dummy(s)76.0z-direction2.7Astimum Yaw Angle (deg)-228.2Gross Static919.82.72.72.72.7	Test Vehicle		x-direction	9.5	Max. Occ. Compart.			foot lane width to
DesignationPassenger carPHD (optional)9.65 gModel2000 Chevrolet Metro LSiASI (optional)0.79Post-Impact Vehicular BehaviorMass (kg)2000 Chevrolet Metro LSiASI (optional)0.79Post-Impact Vehicular BehaviorMass (kg)845.5x-direction-8.7Maximum Roll Angle (deg)-31.6Curb845.5x-direction-8.7Maximum Pitch Angle (deg)-23.9Test Inerial84.3.8y-direction2.7Maximum Yaw Angle (deg)-228.2Dummy(s)76.0z-direction2.70ros Static919.8	Type	Production Model	y-direction	2.1	Deformation (mm)	40		the right.
Model2000 Chevrolet Metro LSiASI (optional)0.79Post-Impact Vehicular BehaviorMass (kg)Mass (kg)Max. 0.050 - s Average (g's)Maximum Roll Angle (deg) - 31.6Curb845.5x-direction-8.7Maximum Pitch Angle (deg) - 23.9Curb843.8y-direction1.5Maximum Yaw Angle (deg) - 228.2Dummy(s)76.0z-direction2.72.7	Designation	Passenger car	PHD (optional)	9.65 g				
Mass (kg) Mass (kg) Maximum Roll Angle (deg) -31.6 Curb 845.5 x-direction -8.7 Maximum Roll Angle (deg) -31.6 Curb 843.5 x-direction -8.7 Maximum Pitch Angle (deg) -23.9 Test Inertial 843.8 y-direction 1.5 Maximum Yaw Angle (deg) -228.2 Dummy(s) 76.0 2.77 Maximum Yaw Angle (deg) -228.2 Gross Static 919.8 2.77 Maximum Yaw Angle (deg) -228.2	Model	2000 Chevrolet Metro LSi	ASI (optional)	0.79	Post-Impact Vehicular Behavior			
Curb 845.5 x-direction -8.7 Maximum Pitch Angle (deg) -23.9 Test Inertial 843.8 y-direction 1.5 Maximum Yaw Angle (deg) -228.2 Dummy(s) 76.0 z-direction 2.7 0.3 2.28.2 Gross Static 919.8 2.7 0.3 0.3 0.3	Mass (kg)		Max. 0.050 - s Average (g's)		Maximum Roll Angle (deg)	-31.6		
Test Inertial 843.8 y-direction 1.5 Maximum Yaw Angle (deg) -228.2 Dummy(s) 76.0 z-direction 2.7 0.9 -228.2 Gross Static 919.8 2.7 2.7 2.7 2.7	Curb	845.5	x-direction	-8.7	Maximum Pitch Angle (deg)	-23.9		
Dummy(s) 76.0 z-direction 2.7 Gross Static 919.8	Test Inertial	843.8	y-direction	1.5	Maximum Yaw Angle (deg)	-228.2		
Gross Static 919.8	Dummy(s)	76.0	z-direction	2.7				
	Gross Static	919.8						

2.000 s	to Sti
1.20 s	
ران ه. 0.600 s	I Impact Point
0.300 s	0.19 million 00 millio
0:00 s	

est The impacting	vehicle's final	most outer right	trajectory stayed	within twelve feet	of the barrier.	Assuming that the	barrier was at the	right edge of the	lane, the vehicle	would have stayed	within a 12-foot	lane width to the	right.								
Vehicle Trajectory Post Te																					
	13.84	13.84				N/A	12FDEW2		RF0000000		465		0		vior	g) -10.25	eg) -5.27	eg) 18.19	i		
Test Article Deflections (m)	Dynamic	Permanent		Vehicle Damage	Exterior	VDS	CDC	Interior	OCDI	Maximum Exterior	Vehicle Crush (mm)	Max. Occ. Compart.	Deformation (mm)		Post-Impact Vehicular Behar	Maximum Roll Angle (de	Maximum Pitch Angle (d	Maximum Yaw Angle (d			
	102.3	20		N/A	N/A			8.9	0.4	45.0 g		10.9	1.6	14.6 g	1.29		-15.1	-1.5	-5.2		•
Impact Conditions	Speed (km/h)	Angle (deg)	Exit Conditions	Speed (km/h)	Angle (deg)	Occupant Risk Values	Impact Velocity (m/s)	x-direction	y-direction	THIV (optional)	Ridedown Acceleration (g's)	x-direction	y-direction	PHD (optional)	ASI (optional)	Max. 0.050-s Average (g's)	x-direction	y-direction	z-direction		
	Transportation Research	Center Inc. (TRC Inc.)	061205	December 5, 2006		Sand barrel array	Plastic Safety Systems, Inc.	12 individual portable sand filled	barrels, each being 122 cm high	with a 91 cm diameter	N/A		Production Model	2000P	2002 GMC Sierra 2500		2285.0	2028.8	0.0	2028.8	
General Information	Test Agency		Test No.	Date	Test Article	Type	Manufacturer	Size and/or dimension	and material of key	elements	Soil Type and Condition	Test Vehicle	Type	Designation	Model	Mass (kg)	Curb	Test Inertial	Dummy(s)	Gross Static	

Test Summary Report		Finite Element Analysis of Test 3-43
General Information Test Agency: Test Number: Test Date: Test Article:	Battelle COE 2006-10-06 10 / 06/ 2006 Crash Guard (bottor	n of sand is 17.5 inches above grade)
Test Vehicle Description: Test Inertial Mas Gross Static Mas	s: 20 s: 20 s: 20	0 kg Mass 00 kg 00 kg
Impact Conditions Speed: 100.0 k Angle: 0.0 de	m/hr grees	
Occupant Risk Factors Impact Velocity x-direct y-direct	(m/s) at ion 7.2 ion -0.4	0.1583 seconds on front of interior
THIV (km/hr): THIV (m/s):	26.0 at 7.2	0.1581 seconds on front of interior 2
Ridedown Accel x-direct y-direct	erations (g's) ion -8.9 (0 ion 4.0 (0	2088 - 0.2188 seconds) 1725 - 0.1825 seconds)
PHD (g's):	9.1	1 (0.2088 - 0.2188 seconds)
ASI:	0.:	53 (0.0297 - 0.0797 seconds)
Max. 50msec Moving Av x-direction y-direction z-direction	g. Accelerations (g's) -6.3 (0 2.1 (0 1.2 (0	0585 - 0.1085 seconds) 1528 - 0.2028 seconds) 2336 - 0.2836 seconds)
Max Roll, Pitch, and Yaw Roll Pitch Yaw	Angles (degrees) 3.1 (0 -2.3 (0 -3.6 (0	.3732 seconds) .2998 seconds) .3452 seconds)

Title 23, Code of Federal Regulations§ 635.411Material or product selection.

(a) Federal funds shall not participate, directly or indirectly, in payment for any premium or royalty on any patented or proprietary material, specification, or process specifically set forth in the plans and specifications for a project, unless:

(1) Such patented or proprietary item is purchased or obtained through competitive bidding with equally suitable unpatented items; or

(2) The State transportation department certifies either that such patented or proprietary item is essential for synchronization with existing highway facilities, or that no equally suitable alternate exists; or

(3) Such patented or proprietary item is used for research or for a distinctive type of construction on relatively short sections of road for experimental purposes.

(b) When there is available for purchase more than one nonpatented, nonproprietary material, semifinished or finished article or product that will fulfill the requirements for an item of work of a project and these available materials or products are judged to be of satisfactory quality and equally acceptable on the basis of engineering analysis and the anticipated prices for the related item(s) of work are estimated to be approximately the same, the PS&E for the project shall either contain or include by reference the specifications for each such material or product that is considered acceptable for incorporation in the work. If the State transportation department wishes to substitute some other acceptable material or product for the material or product designated by the successful bidder or bid as the lowest alternate, and such substitution results in an increase in costs, there will not be Federal-aid participation in any increase in costs.

(c) A State transportation department may require a specific material or product when there are other acceptable materials and products, when such specific choice is approved by the Division Administrator as being in the public interest. When the Division Administrator's approval is not obtained, the item will be nonparticipating unless bidding procedures are used that establish the unit price of each acceptable alternative. In this case Federal-aid participation will be based on the lowest price so established.

(d) Appendix A sets forth the FHWA requirements regarding (1) the specification of alternative types of culvert pipes, and (2) the number and types of such alternatives which must be set forth in the specifications for various types of drainage installations.

(e) Reference in specifications and on plans to single trade name materials will not be approved on Federal-aid contracts.

(f) In the case of a design-build project, the following requirements apply: Federal funds shall not participate, directly or indirectly, in payment for any premium or royalty on any patented or proprietary material, specification, or process specifically set forth in the Request for Proposals document unless the conditions of paragraph (a) of this section are applicable.

[41 FR 36204, Aug. 27, 1976, as amended at 67 FR 75926, Dec. 10, 2002]